top of page
Search
Writer's pictureJaden Pan

Automated Test Generation for Hardware Trojan Detection using Reinforcement Learning

Due to globalized semiconductor supply chain, there is an increasing risk of exposing System-on-Chip (SoC) designs to malicious implants, popularly known as hardware Trojans. Unfortunately, traditional simulation-based validation using millions of test vectors is unsuitable for detecting stealthy Trojans with extremely rare trigger conditions due to exponential input space complexity of modern SoCs. There is a critical need to develop efficient Trojan detection techniques to ensure trustworthy SoCs. While there are promising test generation approaches, they have serious limitations in terms of scalability and detection accuracy. In this paper, we propose a novel logic testing approach for Trojan detection using an effective combination of testability analysis and reinforcement learning. Specifically, this paper makes three important contributions. 1) Unlike existing approaches, we utilize both controllability and observability analysis along with rareness of signals to significantly improve the trigger coverage. 2) Utilization of reinforcement learning considerably reduces the test generation time without sacrificing the test quality. 3) Experimental results demonstrate that our approach can drastically improve both trigger coverage (14.5% on average) and test generation time (6.5 times on average) compared to state-of-the-art techniques.





https://dl.acm.org/doi/10.1145/3394885.3431595

2 views0 comments

コメント


Post: Blog2_Post
bottom of page